
量子纠缠的影响是瞬时的,引力波的传递速度是光速。
相对论描述了在我们宇宙中,有效信息的传递速度最快为光速;从爱因斯坦的引力场方程,也可以得到引力波的传递速度为光速,这点已被天文观测所证明。

比如在2017年10月16日,人类观察到的双中子星合并事件,就距离地球1.3亿光年,电磁波和引力波几乎同时到达地球,证明了引力波的传递速度为光速。
在量子力学中,有一个神奇的量子纠缠现象,该现象表明无论相距多远的纠缠态粒子,都能保持着相互联系,当一方的波包塌缩时,另外一方也会塌缩成单一态。

而且科学家已经用实验证明,量子纠缠的传递速度是超光速,或者说根本就没有传递过程,量子纠缠效应就是瞬时的,完全无视空间距离。
这点也被高能物理实验证明,比如在大型强子对撞机中,我们可以把单个质子加速到光速的99.99999%,但无论如何提高加速器的能量,都无法把质子加速度到光速(质子有静止质量,所以无法达到光速)。

又比如在宇宙大爆炸理论中,空间两点的退行速度可以超过光速,这是因为相对论并没有对空间本身做限制;而在量子纠缠中,传递的是随机信息,不是有效信息,所以量子纠缠本身并未违反光速不变原理。

在爱因斯坦建立狭义相对论以后,就从狭义相对论里得到了有质量物体无法通过有限加速达到光速的推论,另外也得出无质量物体必定以光速运动,基于这两点就能推论出能量和信息传递速度也不能超过光速,可以说能量和信息传递不能超光速就包含了前面两个推论,因此通常我们提到狭义相对论不能超光速时,只要理解成能量和信息传递不能超光速就可以了。

就目前的实践和认识水平,光速是不可超越的。实际上这个论断来自于爱因斯坦狭义相对论的光速不变原理。这个原理说的是对于任何惯性系来讲,光在真空中的传播速度是不变的,与观察者和光源的运动状态无关。这个速度的大小为299792458米/秒。光速对于无论以多快速度运动的物体来说仍然是不变。这意味着任何物体的运动速度不能超过光速,甚至达到光速都不行。光速就是最高速,这就是光速限制原理。你可以无限接近299792458米/秒,但在接近的过程中肯定会产生一些效应来阻止你接近,最终是没法达到光速的。比如质量趋向于无限大。

(其中m为物体质量,m0为物体静质量,Ⅴ为物体运动速度,C为光速。)
当速度V→C时,分母→0,则物体质量m→+∞从上式可以看出,只有物质的静止质量m0为0,物质的质量才有可能为0,物质的速度才有可能达到或超过光速。中微子静止质量几乎为0,所以它接近光速;而电磁场(光子)的静止质量为0,所以它达到光速。空间没有质量,所以它的膨胀速度可以超光速(应该说相对论结论可以进一步延伸)。有的读者看到这里会觉得奇怪,不是说光速不可超越吗?怎么有的能超光速?对此传统的解释是:光速限制原理说的是有效信息和能量的传递速度不能超光速,对于没有信息传递的速度没有限制。比如说量子纠缠就没有信息的传递,所以它可以超光速。

那么量子纠缠和引力波超光速了吗?这其实是两个问题,我们必须分开讨论,因为两者的性质完全不同。
于是爱因斯坦以此向玻尔为首的哥本哈根学派发起挑战:是放弃狭义相对论还是放弃哥本哈根诠释?
在爱因斯坦看来,如果要承认狭义相对论的正确性,那么互相纠缠的光子应该在分开的那一刻状态就已经确定,这样无论它们之后分开多远,都能在测量时得到相反的自旋态。所以他认为哥本哈根学派认为光子的状态在被测量时才确定的说法是错误的。

然而玻尔并不这么认为,他坚持哥本哈根诠释的正确性,他指出,在测量前不存在两个光子的波函数,而是只有一个波函数,只有当其中一个光子被测量到时,这个唯一的波函数才随机坍缩为确定的两个光子。既然只有一个波函数,随机坍缩的两个光子的状态自然是同时确定的,但这不需要在两个光子间传递信息,因为坍缩前只有一个波函数。这其实跟单个光子的波函数坍缩是完全一样的,单个光子在被测量前波函数弥漫在整个空间任何可能的地方,但一旦测量,它就从全空间坍缩到一个确定的位置,并且是唯一的位置,它无需告知别处所有可能出现的地方的“自己”不要出现。

在这种解释里,两个光子之间是不传递信息的,而由于其坍缩前无法确定状态,因此光子本身也不携带信息,而由于测量即坍缩,因此也不能提前录入信息。既没有传递信息,也没有携带信息,也不能录入信息,量子纠缠自然就根本不存在超光速传递信息了。
量子纠缠没有超光速那引力波呢?这个问题分两种情况。
首先引力波传播速度等于光速这是广义相对论得出的结论,虽然它其实是利用光速常数强行规定的,但是在多次引力波事件的测量中已经证明,引力波传播速度就是光速!特别是双中子星合并引力波事件,由于引力波和多波段电磁波接收到同一信号,因此已经非常确定引力波传播速度与电磁波波速,即光速一致!
但是在引力波问题上还存在另一种情况,就是宇宙膨胀。

我们知道根据天文观测,宇宙正以大约70km/s/Mpc的速度膨胀,这就导致宇观尺度下两点间的距离在渐渐拉大,因此在引力波源处发出引力波后,引力波沿空间传播过程中,空间距离被拉大了。距离变了那引力波速度怎么算?这问题其实跟宇宙膨胀下的光速是同一个问题。很显然,如果忽略掉宇宙膨胀本身的距离增加问题,宇观尺度下的引力波和光速都将下降,也就是都将低于真空光速常数。

这是很容易理解的,比如说一个距离地球1亿光年的双中子星发生碰撞,那么伽马射线暴和引力波将以光速向地球传播,这将需要1亿年时间,然而在这1亿年的传播过程中,双中子星与地球之间的空间在不断膨胀,距离在不断增加,那么它还能在1亿年时到达地球吗?显然不可能,不然就超光速了。实际情况是引力波和伽马射线暴都将超过1亿年后才能到达地球,如果此时我们依然按照静态宇宙的距离1亿光年来计算,那引力波和伽马射线暴都将低于光速了……

但实际上当我们引入考虑了宇宙膨胀的距离定义,问题就迎刃而解了,引力波和伽马射线暴依然刚好就是光速。
| 留言与评论(共有 0 条评论) |