哈勃升空30周年:改变人类对宇宙认识,哈勃是怎样做到的?

本文参加百家号 #科学了不起# 系列征文赛。

为哈勃望远镜三十周年庆生!

1990年4月24日至今,由NASA和EAS联合发射的哈勃望远镜已经走过了三十个年头。这些年来,它一直在拍摄遥远恒星的照片,带着我们追溯十亿年前的宇宙。

这张图片由亚利桑那大学的Rodger I.Thompson制作。记录了哈勃望远镜三十年来的一些重大科学发现,也是哈勃望远镜三十周年的生日礼物。

哈勃太空的发射,是天文学内令人印象深刻的里程碑。而它设计寿命只有10年,它之所以能走过三十年,是因为这三十年来一直有航天飞机对其观测仪器进行维修和升级。

哈勃太空望远镜于1990年4月24日发射升空。这张照片捕捉到了39a和39b两个平台上第一次有航天飞机的情景。这张照片捕捉到了39a和39b两个平台上第一次停靠航天飞机时的情景。

哈勃望远镜发射时,技术不如现在,它的仪器仅仅可以观测到波长短于可见光的紫外线和可见光。1997年的升级、维护任务增加了一种观测近红外光的仪器,近红外光的波长比可见光的波长更长。这个新的红外眼睛提供了两个新的主要能力:1.更深入地观察太空2.更深入地观察恒星形成的尘埃区域。

RIT的采访?

“我是亚利桑那大学的天体物理学家,我曾经利用近红外观测器,更好的了解了恒星、宇宙是如何运作的。大约35年前,我有幸为哈勃望远镜制造了一台近红外照相机和光谱仪。这是个千载难逢的机会,正是在这样的机会下,我的团队设计和开发的红外相机改变了人类观察和认识宇宙的方式。该仪器是在我们团队的指导下,由科罗拉多州博尔德的Ball航空公司完成制造的。”

我们用眼睛可以看到的光是电磁光辐射范围的一部分。短波长的光是更高的能量,波长越长,能量就越低。哈勃太空望远镜能看到原始可见光。(这里用彩虹表示)还有一些红外线和紫外线辐射。通过NASA/JHUAP/SWRL的映像可以看到更遥远和更早期的。HST的同名者Edwin-Hubble在20世纪早期发现宇宙正在膨胀,是来自遥远星系的光被转移到更长的地方,更长的红波,一种叫红移的现象。

距离越大,位移就越大。这是因为物体离我们越远,地球上的光到达我们这里所需的时间就越长,在那个时候宇宙的膨胀也就越大。哈勃的紫外线和光学仪器拍摄了其今为止所见过的最远星系的图像,这些星系被称为北方哈勃深空或称NHDF,于1966年发布。然而由于红移这些图像已经达到了它们的距离限制,红移将所有最远星系的光从可见光转移到红外光。哈勃望远镜在第二次维修任务中附加的一种仪器有个别扭的名字,近红外相机与多目标光谱仪,NICMOS发音为“Nike Moss”。MICMOS上的近外相机观察到了NHDF的区域,发现了更远的星系,所有的光都在近红外波段。

用NICMOS拍摄的经典图像,它显示了银河系中心的一个巨大的星团,由于红外能力,NICMOS能通过透过这些中心的区域的尘埃云和气体。通过NASA/JHUAPL/SWRL拍摄的图像。天文学家有幸观察到过去发生的事情,被称之为“回望时间”,我们对宇宙年龄的最佳测量是137亿年。光在一年中传播的距离称为光年。NICMOS观测到的最遥远的星系距离它130亿光年。

这说明NICMOS(近红外线照相机和多目标分光仪,哈勃太空望远镜上的红外线天文仪器)所探测到的光线已经在宇宙中行进了130亿年之久,而它展现出的,是宇宙年龄还是现今5%时的遥远景象。这些景象包括宇宙最早期形成的一批星系,而构成这些早期星系的恒星的形成速度则是现今宇宙中恒星诞生的一千倍。

被尘沙掩埋。

尽管天文学家研究恒星形成已有数十年,仍有许多疑惑未得到解答。研究中一大阻碍便是尘埃。由于大多数恒星是从分子云与尘埃之中形成的,形成时发出的紫外线以及大部分可见光被尘埃尽数吸收,使得哈勃的紫外线与光学仪器难以探测到这一过程。

光的波长越长(或光越红),越难以被吸收。日落时阳光斜射,需穿过的大气距离变长且布满灰尘,所以此时的天空看起来是红色的。相比起红色可见光,近红外更容易穿透灰尘。依赖哈勃望远镜出众的图像质量,NICMOS能够判断分子云内部恒星形成的位置。比如,鹰状星云著名的的特写照片"创生之柱"就出自哈勃望远镜之手。

哈勃望远镜的光学图像中,宏伟的柱形似乎表明恒星在大片空间形成,然而NICMOS利用近红外捕捉到的图像却给出不同的解答。图像中多数柱形都是透明的,透明处没有恒星,而恒星只在柱形的尖端形成。光学图像中的柱形仅仅是尘埃反射附近星群发出的光。

可见光下的鹰状星云。图源:美国国家航空航天局(NASA),欧洲航天局(ESA)和哈勃文化遗产团队(STScI / AURA)

图为哈勃太空望远镜捕捉到的图像:鹰状星云的创生之柱。红外光下,柱形清晰可见。这些红外光穿透尘埃和气体的重重阻隔,将创生之柱陌生又惊艳的新面孔展现在世人眼前。

NASA,ESA/哈勃与哈勃遗产团队

开启红外时代

1997年,哈勃望远镜安装近红外相机NICMOS,当时NASA并没有未来红外观测宇宙的计划。而NICMOS的观测结果让NASA迅速改变了想法。基于NICMOS的数据,科学家们发现,宇宙中星系的诞生时间比人们预期的要早得多。NICMOS的图像也同样证实,先前认为宇宙减速膨胀的观点是错误的,与之恰恰相反,宇宙正在加速膨胀。继NHDF红外图像之后,2005年哈勃超深场(Hubble Deep Ultra Field)图像进一步显示出远距离年轻星系近红外成像的作用之大。于是NASA决定投资詹姆斯·韦伯太空望远镜(James Webb Space Telescope, JWST),该望远镜比哈勃大得多,且专门用于红外线观测。

在2009年5月安装的第三代广域照相机(Wide Field camera)基础上,哈勃望远镜又增加了一台近红外成像仪。这台相机提升了NICMOS探测器阵列,灵敏度更高且探测范围更广。

詹姆斯·韦伯太空望远镜所使用的NICMOS探测器阵列更大,比先前的波长覆盖范围更广。

詹姆斯·韦伯太空望远镜计划于2021年3月发射,并与随其后发射的广角红外巡天望远镜(Wide Field Infrared Survey Telescope),构成执行NASA未来太空任务的主体。这些观测项目的诞生都归功于哈勃望远镜的近红外观测。而最初投资的近红外相机和光谱仪,给予了哈勃望远镜进行红外观测的“眼睛”,也使之后的这些项目得以实现。通过詹姆斯·韦伯太空望远镜,天文学家有望看到宇宙中最早形成的星系。

作者:EarthSky Voices

FY:Astronomical volunteer team

如有相关内容侵权,请于三十日以内联系作者删除

转载还请取得授权,并注意保持完整性和注明出处

发表评论
留言与评论(共有 0 条评论) “”
   
验证码:

相关文章

推荐文章