大疆2019年公布的面向小FOV Lidar的LOAM算法。相比LOAM,做了一些改动。算法的特点:1.添加策略提取更鲁棒的特征点:a) 忽略视角边缘有畸变的区域; b) 剔除反射强度过大或过小的点 ; c) 剔除射线方向与所在平台夹角过小的点; d) 部分被遮挡的点2.与LOAM一样,有运动补偿3.里程计中剔除相对位姿解算后匹配度不高的点(比如运动物体)之后,再优化一次求解相对位姿。
1.Grisetti, G., et al. (2007). "Improved techniques for grid mapping with rao-blackwellized particle filters." 23(1): 34-46.2.Kohlbrecher, S., et al. (2011). A flexible and scalable slam system with full 3d motion estimation. 2011 IEEE international symposium on safety, security, and rescue robotics, IEEE.3.https://github.com/ros-perception/slam_karto4.https://github.com/skasperski/OpenKarto5.https://github.com/cartographer-project/cartographer6.Hess, W., et al. (2016). Real-time loop closure in 2D LIDAR SLAM. Robotics and Automation (ICRA), 2016 IEEE International Conference on, IEEE.7.Zhang, J. and S. Singh (2014). LOAM: Lidar Odometry and Mapping in Real-time. Robotics: Science and Systems.8.https://github.com/HKUST-Aerial-Robotics/A-LOAM9.Shan, T. and B. Englot (2018). Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE.10.Lin, J. and F. Zhang (2020). Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE.11.Zhang, J. and S. Singh (2015). Visual-lidar odometry and mapping: Low-drift, robust, and fast. 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE.