服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

2023「炼丹」GPU选购指南来了:英伟达3080和4070Ti成性价比之王

日期: 来源:量子位收集编辑:关注前沿科技
Alex 发自 凹非寺
量子位 | 公众号 QbitAI

春暖花开,各位深度学习er想不想给自己的“丹炉”升级一波?

“炼丹”爱好者们应该知道,在该领域中,**GPU的总体表现完胜CPU。

那么GPU应该怎么选?不妨来看看这篇超级详尽的“2023版GPU选购指南”

知名测评博主、华盛顿大学在读博士Tim Dettmers亲测后,写下万字长文,手把手教你Pick性价比最高的显卡,避免踩雷。

光是目录就有这么长……

至于谁是性价比之王,不卖关子,这里先放上Tim哥的结论:

对于16位训练过程,RTX 3080的性价比最高;对于8位和16位推理,RTX 4070Ti的性价比最高。

有意思的是,不只这俩,他在本文推荐的显卡全是英伟达家的——Tim哥觉得,对于深度学习,“AMD GPU+ROCm”目前还打不过“NVIDIA GPU+CUDA”。

手把手教你挑GPU

Tim哥自制了一张表格,展示出在训练和推理过程中,一美元能买到多少算力;这在一定程度上体现了英伟达众显卡的性价比。

蓝色-16位训练;红色-16位推理;黄色-8位推理

看到这个,你可能一脸问号:从表格来看,不是RTX 4080在8位和16位推理上的性价比更高吗?

其实,咱们开头说的是“综合性价比”——

除了看一美元能买多少算力,还要结合显卡的运行成本,比如电费。所以总的来说,还是RTX 4070Ti的性价比更高。

虽然RTX3080和RTX 4070 Ti性价比高,但这俩的内存是个明显短板

Tim哥指出,12GB在很多情况下都不够用,要运行Transformer模型的话,至少需要24GB。

于是,Tim哥又贴心地做了一个小程序,帮你根据不同的任务选择最合适的GPU。

其背后的核心思想是:不管干啥,一定要保证GPU的内存满足你的需求。

首先,要弄清楚这个GPU是个人用还是公用,还有就是要处理什么任务——比如,是要训练语言大模型(LLM)吗、参数量有没有超过130亿?还是就做点小项目?

然后再根据自己的钱包情况,参考上面的表格,选择最合适的GPU。

举个例子:

如果要训练LLM且参数量超过130亿,不差钱的可以选择支持Azure公有云的A100或者H100;追求性价比的话,可以选支持AWS的A100或者H100。

但如果预算实在有限,建议放弃……

(在亚马逊上,40GB的英伟达Tesla A100售价为11769美元起,约合人民币79529元。当然这都是针对国外的情况,在国内炼丹仅供参考)

另外,Tim哥还支了一招:最好用云GPU(比如Lambda云)来估测一下所需的GPU内存(至少12GB用于图像生成,至少24GB用于处理Transformer)。

其实假如GPU仅偶尔使用(每隔几天用几小时),甚至都不用去买个实体的,用云GPU就可以了。

对了~如果你真的不在乎这点(?)钱,就要追求极致性能,那可以看看这张表,即GPU的原始性能排行。

那如果实在钱不够,即使是Tim哥推荐的最便宜的GPU也买不起,还有办法吗?

那可以考虑二手呀!

先去买个便宜的GPU用于原型设计和测试,然后在云端进行全面的实验和测试。

关键性能点有哪些?

盘点完英伟达的一堆GPU后,再来叙一叙关乎深度学习速度的几大GPU性能关键点。

(如果你想稍微深入了解一些,请接着往下看。)

Tim哥指出,重点有四:GPU的内存、核心、Tensor Core和缓存

而其中最重要的是Tensor Core

Tensor Core是英伟达为其高端GPU开发的一项技术,本质上,就是加速矩阵乘法的处理单元。其中Tensor即张量,是一种能表示所有类型数据的数据类型。

Tim表示,在所有深度神经网络中,最昂贵的部分是矩阵乘法,而有了Tensor Core,运算速度会变得非常快,有助于大大减少成本。

就拿一个入门级的32×32矩阵乘法来说,通过Tensor Core,将矩阵乘法的运算时间从504个周期,降低到235个周期,直接减半。

而且即便是超大规模的矩阵运算,Tensor Core也能轻松处理。在规模堪比GPT-3的训练中,Tensor Core的TFLOPS利用率也就约为45-65%。

而当两个GPU都有Tensor Cores时,要比较它们性能,最佳指标之一就是内存带宽

例如,A100 GPU的内存带宽为1555GB/s,而V100为900GB/s。因此,A100和V100相比,运算速度大概是后者的1555/900=1.73倍。

由此可见,内存带宽会影响到Tensor Core的性能发挥。于是研究人员开始寻找其他GPU属性,使内存数据传输到Tensor Core的速度更快。

然后,他们发现,GPU的一级缓存、二级缓存、共享内存和使用的寄存器数量也都是相关因素。

对于缓存来说,数据块越小,计算速度越快;所以需要把大的矩阵乘法,划分成小的子矩阵乘法。研究者们把这些小的子矩阵乘法称为“内存碎片”*(memory tiles)。

一部分“碎片”被加载到Tensor Core中,由寄存器直接寻址。

根据英伟达Ampere架构的规则,举个例子~

把每一个权重矩阵都切成4个“碎片”,并假设其中两个为零——于是就得到了一堆稀疏权重矩阵。

然后把这些稀疏权重矩阵与一些密集输入相乘,Tensor Core功能启动,将稀疏矩阵压缩为密集表示,其大小为下图所示的一半。

在压缩之后,密集压缩的“碎片”被送入Tensor Core,计算的矩阵乘法是一般大小的两倍。这样,运算速度就成了通常的2倍。

Tim哥表示,上述性能点,他在统计英伟达GPU性能时都考虑在内了。

如果你把这些东西吃透了话,以后就能完全靠自己配置出最合适的“炼丹炉”了。

原文传送门:
https://timdettmers.com/2023/01/30/which-gpu-for-deep-learning/

「中国AIGC产业峰会」启动

邀您共襄盛举

「中国AIGC产业峰会」即将在今年3月举办,峰会将邀请AIGC产业相关领域的专家学者,共同探讨生成新世界的过去、现在和未来。

峰会上还将发布《中国AIGC产业全景报告暨AIGC 50》,全面立体描绘我国当前AIGC产业的竞争力图谱。点击链接或下方图片查看大会详情:

寻找中国版ChatGPT,量子位邀你共同参与中国AIGC产业峰会


点这里

相关阅读

  • 金融学术前沿:破局者ChatGPT

  • 2023年2月28日晚,第160期“金融学术前沿”报告会在复旦大学智库楼209会议室举行。本次时事报告主题是“破局者ChatGPT”,由复旦发展研究院金融研究中心(FDFRC)组织举办,中心主任
  • PCI-SIG :显卡着火与规范无关!

  • EETOP版图就业&提升班正式开班报名!12 月 2 日消息,PCI-SIG 组织现发表公开声明以回应最近针对 NVIDIA 12VHPWR 连接器熔化的诉讼,轻描淡写地向所有参与生产或销售16pin 12VHPW
  • 芳芳频道|李艳芳三套卷复盘(数三③)数三完结篇

  • 往期直达数一复盘(已完结)数二复盘(已完结)数三第二套复盘数三第三套总体相比于前两套,除了小题4、6、7、14外,其余的题应该都还算好找思路。计算量也适中,没有计算量偏大的题。绝
  • 用游戏修好去元宇宙的路 | 衣公子

  • 衣公子的剑——从商业的角度,看看这个世界谁能想到呢,多年后英伟达(Nvidia)成了世界第一大芯片公司,而且抵得上四个英特尔(Intel)。对于衣公子这一代人,提到芯片就想到英特尔。英特
  • 7199起!你,我,200

  • 9月20日GTC2022活动上,英伟达CEO黄仁勋发布了英伟达新一代游戏显卡RTX40系列距离RTX30系列发布已经过了两年三款新显卡分别是RTX 4090RTX 4080(12GB)RTX 4080(16GB)其中,RTX4090为
  • ChatGPT突然爆火,对大家来说是蜜糖还是毒药?

  • 这段时间,小编一进到办公室就能听到大家对于ChatGPT的讨论,也不仅是在我们之中,在全球范围内,ChatGPT都成为了关注前端科技的小伙伴们讨论的最多的话题。随着前段时间,作为此次Ch

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章