服务粉丝

我们一直在努力
当前位置:首页 > 科技 >

光学在科技和人类生活中的无可替代的重要作用

日期: 来源:科技工程与生活收集编辑:光刻

光的出现远在人类出现之前,宇宙大爆炸后0.01秒后,光子就在寂静的宇宙中出现。如果宇宙中的第一个光子现在仍然以光子的形式存在着,那么它已经150亿岁了。

光子在宇宙大爆炸后0.01秒产生

而当你仰望星空,看到比邻星——离我们最近的太阳系外的恒星,也已经是来自4.22年之前的问候。

惠更斯说:“光,是波动。”

牛顿说:“光,是粒子。”

德布罗意说:“光,是波动,也是粒子。”

关于光,还有许许多多的未知我们不曾了解,但是认识和利用光的路上,我们从未停止脚步……

光学·历史悠久的学科

阳光是宇宙送给人类最好的礼物。在地球上,因为有了光,所以有了生命,有了世间万物,有了文明。

在古代中国,人们就用烽火作为战争的信号,是以光作为媒介进行通信的第一次尝试。

烽火台:古代中国的光通信

人类巧妙地利用光,照明、取暖、传递信息……

放大镜聚光点火

不知道你有没有在荒岛求生的电影中看到过这样的场景:主人公掉落荒岛,没有打火机,也没有火柴。于是拆掉手表上的玻璃,将阳光汇聚在干木上点火。

随着人类文明的发展,人类对于光学的认知不断地系统化,完整化。

在中国,战国后期的墨家在《墨经》中记载了小孔成像、平面镜、凹面镜、凸面镜成像的观察研究,系统地总结为《光学八条》。古希腊的欧几里得研究光学的反射现象,编纂了《反射光学》;阿拉伯学者阿勒·哈增编纂的《光学全书》讨论了许多光学的现象;而反射定律和折射定律的建立,奠定了几何光学的基础,使光学成为了一门学科。

光学·就在我们身边

今天,光和光学已经深入我们生活的方方面面。

● 光与显示技术

清晨拿起手机,大千世界通过一方小小的屏幕显示在你眼前。打开电视,观看早间新闻,越来越大、越来越清晰的显示屏让你能够享受更加身临其境的视觉效果。走出家门,各式各样的LED显示屏充斥着大街小巷,信息以最直观的方式向你涌来。走入办公室打开电脑,更加符合人体力学的弧度屏幕让你更加舒适地开始一天的办公。

激光技术的发展让显示技术有了二维到三维的延伸,发展出全息显示技术、VR显示技术、AR显示技术等多种三维显示技术,人们对于世界的记录和观察,不再停留在平面上,而是延伸到三维空间。

3D显示:大千世界,触手可及

柔性显示技术因其低功耗、可弯曲的特性对可穿戴式设备的应用带来深远的影响。未来柔性屏幕将随着个人智能终端的不断渗透而广泛应用,相信再过不久,我们就可以穿着不停闪烁、变换图案的柔性屏衣服散步街头了。

柔性显示材料

● 光与生物学

光学与生物学的交叉学科,是众多科学学科中最具发展潜力的学科之一。

激光在疾病诊断、治疗结石、眼部疾病、基因测序等方面有着丰富的发展成果和临床应用。而激光的高强度,可控性和良好的方向性,可以与中医中针灸治疗法结合。

近年,单细胞研究成为热点。2017年启动的人类细胞图谱计划(HumanCellAtlas,HCA)提出系统性描述人体每个细胞的类型、分子组成、定位和微环境,并通过这把钥匙,加深对疾病诊断、监测、治疗的理解。

而光谱学的发展恰恰为单细胞的精准和特异性研究提供了十分有效的工具:

拉曼光谱是一种分子化学键振动的散射光谱,开辟了分子结构研究的一个全新的领域,是一种无损伤探测技术。通过拉曼光谱识别的单细胞,可以通过单细胞精准分选的方法将其从复杂环境中分离出来,进而开展深入研究。

拉曼光谱应用于单细胞检测

单细胞的拉曼图谱可作为其“化学指纹”,蕴含着细胞的丰富化学生物信息。单细胞拉曼技术在疾病诊断、药物代谢、病理机制研究等领域中具有巨大应用前景。

● 光与材料学

光与材料学的交叉形成了非常丰富的学科系统。从激光与物质的相互作用,到发光、吸光材料的制备,光学与材料学紧密联系,密不可分。

新兴的光学材料,如钙钛矿、量子点等,已经广泛地应用到发光二极管(LED)、太阳能电池等领域。

新型光学材料:钙钛矿LED(左);量子点(右)

激光与材料相互作用,能够在材料表面和内部产生许多神奇的新性质:

飞秒激光加工的“纳米牛”

在金属、半导体等材料表面,用飞秒激光进行加工,能够在材料表面形成不同的微纳结构,从而使材料获得亲水、疏水、发光性能增强、催化效果增强等一系列新的优良性质。

光刻机

芯片的重要性已经有目共睹,为了维持互联网产业的繁荣,我国每年要花两千亿美元在芯片上,超过总进口的百分之十。(数据来源:国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)而要制造一颗芯片,需要经过5000多道工序,其中光刻机,便是最重要的一环之一。不夸张地说,光刻机代表着精密仪器的最高水平之一。

和传统的人手、机床等原始工具不同,光刻机是使用光作为自己的“刀”来对结构进行加工的。光刻机的这把刀,可谓是既锋利又精密。就量产精度而言,第四代光刻机可以达到22纳米,第五代光刻机可以达到5纳米,而实验室里甚至可以实现1纳米!我们以22纳米为例,普通人的头发直径约80微米,是22纳米的3600多倍。完全可以围绕一根头发刻一副北京地图出来。

光刻过程的示意图

实际上,光刻的原理不难,难还是主要难在光刻机的制造上。光刻机的镜头、光源生产、机械结构,几万个小元件的调整与制造,任何一点拿出来都是某个领域最强者的独门绝技。ASML(高端光刻机的垄断者)的总裁温彼得曾经说过,如果说,光刻机镜头有整个德国那么大,那么形变最大的地方,不能高过一公分。可见对于机器制造来说,这种要求是多么的苛刻。

光刻机的原理图

全世界最高端的光刻机产自荷兰的ASML公司,它是世界最高端的光刻机生产者,也是唯一的生产者。它所生产的极紫外光刻机(EUV光刻机),可以前所未有地突破22纳米制程限制,被称为第五代光刻机。

AMSL生产的光刻机

我国在芯片领域落后国际良多,需要加速追赶。国内量产精度最高的光刻机也不过90纳米,实验室里也只能实现22纳米。不过,中国科学院长春光机所在极紫外光刻方面首次完成了32nm光刻机的研制,在该方面迈出国内第一步,为未来的研究打下了良好的基础。

● 光与通信技术

光纤入户这个词想必大家并不陌生,光纤的发明和应用在通信技术的发展史上有着里程碑式的意义。也因此,华裔物理学家高锟先生因在“有关光在纤维中的传输以用于光学通信方面”做出突破性成就,获颁2009年诺贝尔物理学奖。

信息高速公路——光纤

光信号以300000000m/s的速度在光纤中飞速传播,信息的传播前所未有的迅速和广泛,世界也仿佛在光纤的连接下逐渐变小。

今天光纤通信已经是各种通信网的主要传输方式。光纤的使用也已经从陆地延伸到大西洋和太平洋海底,全球通信变得非常简单快捷。20年前,跨国电话价格非常高昂,而且通话时有很大的延迟,给通话双方带来很大的不便。而今天,即使身在地球的两端,也能随时随地进行视频通话。这些都是光纤通信带来的巨大便利。

● 光与存储技术

最早的光存储技术可以追溯到光盘,光盘经历了WORM光盘、磁光盘(MO)、CD光盘、DVD光盘等时期。随着更加便于使用和携带的U盘的出现,光盘渐渐淡出人们的视线,光存储技术的发展和普及进入一段低谷时期。

但是全息存储技术的产生和发展赋予了光存储新的生命。

全息存储技术用激光在晶体中形成一系列可以存储信息的光栅,具有很高的存储密度,理论上最高可以达到1000TB,相当于目前最大容量的硬盘的160多倍,相当于常用的32GB硬盘的32000倍。

全息存储(左)与全息显示技术(右)

更加神奇的是,全息存储器不需要任何移动部件,数据的读写都能以非接触时的操作完成,并且几乎可以永久保存数据。

● 光与宇宙探测

光学方法是目前探测宇宙最主要且最有效的方法。

相信很多天文迷对哈勃望远镜都不陌生。它以2.8万公里的时速沿太空轨道运行,像是人类在太空的巨大眼睛,静静地凝望寂静的宇宙。哈勃自1990年服役以来,已在轨摄影20余年。它成功弥补了地面观测的不足,是天文史上的重要仪器。

4000光年外的礁湖星云(哈勃摄影)

哈勃的建造是个庞大的光学工程,其建造计划一经批准,被拆分成多个子计划,由美国太空总署(NASA)的多个研究中心分摊光学系统、望远镜设计及建造、传感器的设计、地面控制等任务。

光学系统是哈勃的心脏,其采用卡塞格林式反射系统。虽然只有主次两镜,但哈勃在设计和制造上有着严格的规范,要求镜子在抛光后的面形误差应小于可看见光波长的1/20(约30纳米)。科研人员使用极端复杂的电脑控制抛光机研磨镜子,2.4米的主镜磨了3年,经费也一度超出NASA的预算。

卡塞格林式望远镜光路图

尽管研究人员严格控制精度,在哈勃发射升空的数星期后,其发回的图片还是产生了严重的球面像差。经分析显示,用来测量镜面质量的校正仪器存在偏差,导致实际镜面存在2微米的误差。为修正这仅仅2微米的误差,1993年12月,“奋进号”载着7名宇航员升空,为哈勃加装了拥有相同球差,但功效相反的光学系统。并且为给校正光学系统提供位置,舍弃了高速光度计。尽管代价巨大,哈勃戴上“眼镜”后,终于看到了无码的宇宙。

哈勃“戴眼镜”前、后拍摄到的图像

哈勃已工作28年,先后经历5次大修,早该退役,而其退休时间的不断延长都要怪“拖延癌”韦布空间望远镜。

韦布被认为是继哈勃望远镜后的太空探索者,其发射窗口从最初的2011年拖延至2019年春。今年3月NASA又将其发射期限定在2020年5月左右。

不知你在了解韦布的厉害以后,能否对这个“拖延癌晚期”选择原谅。哈勃主镜2.4米,望远镜总质量11吨,观测范围为可见光;而韦布在经费缩减后,拼接主镜的等效口径仍达6.5米,可观测红外波段,体重却比哈勃轻了一倍。哈勃运行高度570千米,而韦布的目的地是距地球150万千米的第二拉格朗日点。如此远的距离,使韦布不能像哈勃一样进行维修,这项光学工程的要求真的很严格。

韦布与哈勃的主镜比较

韦布可观测红外波段,而红外探测主要依据物体发出的热量,因此必须严格避免周围热源的干扰。韦布拥有一把“遮阳伞”,用以遮蔽来自太阳、地球,甚至月球的热量。遮光板共五层,每一层完全展开占地面积约300平方米,但厚度却不到50微米。在运载火箭中,韦布的遮阳板是收起状态,进入太空后展开,其展开机构共计100个。韦布的上一次延期就是为继续测试遮光板的展开工艺。

其实哈勃也经历过发射窗口推迟。空间望远镜工作条件苛刻,设计制造涉及学科广泛,是极其复杂的光学工程。期待有朝一日,韦布拍摄出比哈勃更为遥远的宇宙,给人类带来巨大的惊喜。

期待JWST带来的巨大惊喜

30米地基望远镜

接下来,我们来谈谈地基望远镜。

望远镜制造中,口径的大小非常的关键,大口径的望远镜是天文学家的“武器”,没了它,再聪明的天文学家也只能巧妇难为无米之炊。根据瑞利判据最小分辨角的公式,,当波长不变的时候,口径D越大,则分辨角α越小,分辨率越高。故而,在过去的几百年,望远镜的发展就是一个越做越大的过程。

自上个世纪九十年代以来,各国陆续建成8到10米地基望远镜,组成了最强望远镜阵容。最近十年以来,国际上又提出了30-40米的大口径望远镜计划,未来十年,光学望远镜很有可能会走向下一个纪元。

TMT正面图

比如著名的TMT红外天文望远镜计划,30米望远镜(ThirtyMeterTelescope,TMT)是由美国加州大学和加州理工学院负责研制的,新一代的巨型光学天文观测设备。这项计划的预算大概是在9.7到12亿美元之间,建造地址计划在莫纳克亚山上,这是全世界最佳观测宇宙的地点之一。

TMT概念图

它的目标将定位于暗能量、暗物质、星系在过去130亿年的聚合和发展、超质量黑洞和星系之间的联系、在太阳系外的星球上搜寻生命等科研任务。

TMT效果渲染图

整个项目由多个国家共同参与建设,包括美国、日本、加拿大等等。其中,我国主要以“实物贡献”的方式参与其中。在TMT建成以后,中国作为主要合作伙伴之一,将获得与实物贡献成比例的观测时长来获得相应的科学回报。国家天文台天体物理学教授毛淑德认为,对于中国来说,这将是一次巨大飞跃。

哈勃望远镜(左)及其拍摄的宇宙图像(右)

中国人自己的空间望远镜——硬X射线调制望远镜卫星“慧眼”也在2017年发射升空,是世界上覆盖能量范围最广的望远镜卫星,之一,将肩负起高精度探测宇宙中黑洞和中子星的使命。

说到探寻宇宙起源,最火热的词莫过于“引力波”了。2016年2月,美国“LIGO”首次在地面直接探测到来自双黑洞并合的引力波信号,并获得了2017年诺贝尔物理学奖。中国的引力波研究也在如火如荼的进行,空间引力波探测计划——太极计划,计划在围绕太阳的轨道上发射三颗彼此相距300万公里的卫星,通过测量卫星间距离的变化来测量引力波信号。如此高精度的测距,“光”无疑是最精确的尺子,太极计划就选择通过光的干涉来测量两个星体距离的变化。

引力波探测光学方法的原理图(上)与装置示意图(下)

结语

光学不仅是基础科学,也是技术科学。当光作为技术科学,应用于人类生产活动中时,能够扩展人们的视觉、听觉和触觉等功能,这包含了人体感觉的90%之多。

王大珩院士在《论光学工程》中写道,“光、机、电、算”已成为现代工程与技术的主要内涵。光的含义也已远远超出传统意义上的望远镜、显微镜等光学仪器。当前的光学仪器(其中大部分指测试计量仪器)已进入光(光学)、机(精密机械)、电(电子)、算(计算机)相结合的光电子技术的新时代。它表现在多功能、高效率的光机电算一体化,技术手段的自动化、智能化、数字化、获取数据从静态转向动态,从有感信息到无感信息。

王大珩先生曾为自己填词抒怀:光学老又新,前程端似锦。搞这般专业很称心!这也是光学界众多研究者的心声!

资料整合自:科学大院 作者单位:中国科学院长春光学精密机械与物理研究所

相关阅读

  • 世界最大液体镜面望远镜开始仰望星空

  • 据英国《新科学家》杂志网站近日报道,位于喜马拉雅山上、直径4米的“国际液体镜面望远镜”(ILMT)已经睁开“眼睛”,看向宇宙深处,它用一个缓慢旋转的液体水
  • 电磁超散射和隐形门

  • |作者:陈焕阳 段琦琳 伍瑞新 马红孺(1 厦门大学物理科学与技术学院)(2 南京大学电子科学与工程学院)(3 云南大学物理与天文学院)本文选自《物理》2022年
  • 韦布空间望远镜周年:它为何如此卓越?

  • 2022年12月14日,《自然》杂志将詹姆斯·韦布空间望远镜的项目科学家Jane Rigby评选为2022年度10人之首,理由是她推动“韦布”成功运行。次日,《科学》杂志
  • 来自其他星系的神秘信号

  • 近日,随着《三体》的热播,大家对来自太空的信号充满了好奇。快速无线电脉冲(FRB)就是天文学中最热门的太空信号之一,FRB是持续时间仅几毫秒的无线电发射脉冲
  • 中国成果入选科学杂志2022年度十大突破

  • 2022年12月16日,美国《科学》杂志公布了本年度十大科学突破榜单。其中,中国的多年生水稻品种的开发入选榜单。多年生水稻可以省去农民每年数周的辛苦劳动

热门文章

  • OPPO k1的低价高配真实么?网友:不看不知道

  • 近日OPPO一款新机OPPO k1,摒弃了高价低配,就连自家老大哥r17都要怼一下。更是放弃了请代言人,以往的OPPO手机还没出来,各路流量小生,花样美男的代言就先来了。还有线下销售人员的
  • 一招教你手机无限制成为一台新设备

  • 大家平时用手机去注册app,肯定会遇到检测设备异常,交易关闭,等问题 这个都是手机已经不止1-2次注册过此app,不断更换手机仅是一个暂时的方法,却不是长久之计,手机总归会用完
  • 从零开始如何开网店

  • 随着互联网的高速发展,人们的生活发生了翻天覆地的变化,生活节奏越来越快,网购已经成为家家户户生活中离不开的一种购物方式了。网购的发展使得越来越多的人想要涉足电商事业,那

最新文章

  • 北部湾港持续助力区域产业链供应链发展

  •   新年伊始,港口愈加繁忙。满载木薯淀粉、纯碱等产品的大型船舶靠港作业,货物装卸完成后又立即驶向越南,这是近来广西北部湾港钦州港区繁忙作业的一个缩影。去年底以来,北部湾
  • 斯里兰卡耍蛇人户外表演

  •   当地时间2023年1月8日,斯里兰卡科伦坡,一名耍蛇人在加勒菲斯步行街上为人群表演。自古以来,斯里兰卡就有传统的耍蛇人耍蛇表演,让当地人和外国人惊讶。他们通过在森林里或房