「挖矿篇」不聊点AI专用芯片,你都没脸谈挖矿

既然挖矿生态市场会随着设备的更新而不断被改变,那么在其中起着核心关键作用的模块就当属挖矿芯片了。从以往的显卡挖矿,扩展到现今主流的ASIC芯片矿机挖矿,起主导作用的就是ASIC挖矿芯片的算力迅猛发展以及算法的延展性能。

目前,比特大陆、嘉楠耘智均在人工智能算法芯片上进行发力,企图透过人工智能算法芯片为挖矿矿机插上腾飞的翅膀。以上两家企业开发的人工智能芯片均在CNN / RNN / DNN 等人工神经网络的预测和训练上进行发力,企图以更加一体化的整体解决服务方案来占据更多的市场份额。挖矿获利颇丰,积极拓展AI芯片业务

从两大巨头比特大陆和嘉楠耘智的业务线设置情况来看,各自也都打算在进一步强化矿机、矿机芯片业务的同时,积极拓展人工智能算法芯片的业务。

从芯片的演变来看,矿机芯片从100nm以上进化到了目前流行的10nm以内,这是一个巨大的跨越。虽然目前最为先进的7nm芯片工艺成本高昂,但7nm工艺对比10nm的性能提升了25%,功耗却降低了35%。对于一般的手机芯片来说,一旦规划采用7nm工艺生产,制造商每年需要大约1.2亿至1.5亿的出货量才能够实现盈亏平衡,以此来弥补研发和制造成本。但是对于矿机厂商来说,这个出货量并不难完成。AI芯片意在何方?

而矿机公司开发人工智能算法芯片与传统芯片公司抢夺市场的情况,是矿机厂商创新性的拓展方式,企图在主营业务以外,抢夺其他芯片公司的市场份额,以求获得更高的利润。而人工智能要发展起来要完全具备四个条件:算法的成熟、大数据的积累、计算能力的进步和应用场景的需求,现在这些条件都已完全成熟,同时也对人工智能算法芯片有着极大的需求。集成运算能力更高的人工智能算法芯片,无疑门槛已被降低,入场者越来越多。

比特大陆的人工智能算法芯片主要服务对象面向深度学习CNN / RNN / DNN 等人工神经网络的预测和训练,辅以视频和图像分析服务系统,为人工智能的落地应用场景提供更多的底层支撑。

嘉楠耘智的人工智能算法芯片主要面向以下几个场景:智能家居、自动驾驶、语音交互、图像识别。第一款量产的AI芯片KPU已经在2017年发布了,基于TSMC先进进程,采用16nm的工艺,提供高性能、低能耗、小型化的芯片。此款单一芯片中集成了人工神经网络和高性能处理器,将来的应用场景有望扩展至智能终端、移动设备、物联网设备等,并在机器学习的图像处理、视频处理、语音处理、运动控制等方面有所表现,这也是目前人工智能领域落地最为实际的应用场景。而在区块链领域中,我们人工智能+区块链方向就有不少项目。

区块链可以看做是分布式的数据、算力、算法的资源集合体,所以很多人认为区块链是解决传统AI难题的一剂灵丹妙药。目前,人工智能行业有以下三大痛点:1、数据被大型企业及组织垄断且质量差;2、在算力上硬件成本高;3、算法人才短缺。

区块链对人工智能的行业赋能完全能够解决前两大痛点。首先去中心化地进行数据收集与共享(数据置换)就能打破目前数据被垄断的市场情况,而其次,人工智能算法芯片在将来也一定会因区块链挖矿而带来一番革命性的变化。首先,矿工一直在进行的就是简单的哈希计算,而深度学习还是主要以GPU通用计算为主。深度学习CNN / RNN / DNN 等人工神经网络的预测和训练算法本身是在既定框架下,由算法工程师主观意愿而调整的,并不是锚定不变的算法。

因此目前来看挖矿硬件是难以支持深度学习训练的。我们现在观察到的几大矿机生产商不断研发制造AI芯片,极有可能是想要研发出满足AI+区块链各种需求的专用芯片,配合专门的协议,可以解决均等分配计算任务的难题,使得矿工在挖矿给区块链账本记账的同时,解决AI计算问题。经过以上分析以及推论,挖矿矿机芯片将会出现以下几大趋势:

1、算力继续上升;

2、能耗继续下调;

3、工艺不断改良,更会不断推出更为精细的芯片;

4、将有满足AI+区块链各种需求的专用芯片出现,实现AI+挖矿,更会有AI矿机面市;且AI+区块链专用芯片的面市,会将挖矿落地到各个场景,不在仅限于矿机挖矿;

5、AI+区块链相关项目将带动AI云挖矿服务的崛起,在前期还未成熟阶段,芯片厂商仍将主打AI芯片以抢夺传统AI云服务(如阿里云、亚马逊AWS等)的市场;

6、中小矿机芯片厂商将会被“AI+挖矿”所淘汰;

矿机芯片生产商积极拓展人工智能算法芯片,将会使得传统简单的哈希运算挖矿被革命,支持深度学习的挖矿芯片将随着人工智能的成熟而迅速抢占市场份额。这也能够使得挖矿不仅仅再是矿场、矿工和矿机们的事了,未来的每一个AI移动设备都是挖矿设备,AI物联网loT设备将会被大批量地激活。

发表评论
留言与评论(共有 0 条评论)
   
验证码:

相关文章

推荐文章

'); })();