第一作者:Xin Guo
通讯作者:李健生 教授
通讯单位:南京理工大学环境与生物工程学院
DOI:10.1016/j.apcatb.2022.122136
将基质和活性点的优点与水基质相结合,对于设计基于过硫酸盐(PMS)的高级氧化过程的新型催化剂具有重要意义。通过将零维金属有机框架(MOFs)衍生的CoO纳米颗粒锚定在二维Ti3C2Tx MXene纳米片上,制造了一种夹层状异质结构催化剂(MCoO@Co-N-C)。受益于独特的结构,所产生的催化剂在高盐度条件下(200 mM)取得了优异的去污性能。仅仅使用0.05 g L-1的催化剂和0.1 g L-1的PMS,就能在10分钟内对双酚A(BPA)进行近100%的降解,其周转频率(TOF)值非常高(8.64 min-1),是不含MXene的MOFs衍生催化剂的22.5倍。研究发现,一种介导电子转移机制有利于双酚A的氧化。这项工作为设计用于去除盐水中的微量有机污染物(TrOCs)的新型催化剂提供了一种新方法。
在这项研究中,通过在MXene纳米片上自组装零维(0D)MOFs,然后采用热解策略(方案1),制造了一种夹层状异质结构催化剂(MCoO@Co-N-C)。由此产生的MXene-MOFs异质结构衍生物成功地将纳米化的CoO封装在MXene上的Co、N共掺杂的碳壳内。0D纳米CoO@Co-N-C均匀地分布在二维MXene平面的两侧,这种开放式的夹层结构确保了质量传递的加速,并最大限度地利用了每个活性位点,有效地促进了PMS的活化。双酚A(BPA)是一种典型的三氯甲烷,被用来研究无机离子在高盐度条件下对MCO@Co-N-C系统的影响。通过元素图谱分析、X射线光电子能谱(XPS)和密度函数理论(DFT)计算,进一步证实了Co-N物种的关键作用。此外,为了阐明PMS的激活机制,进行了一系列的探索,包括淬火实验、电子顺磁共振(EPR)检测、原位拉曼、电化学分析和DFT计算。该研究对PMS-AOPs过程中MXene和MOFs在环境领域的协同作用有了新的机制上的认识。
Fig. 1. SEM images of (a) ZIFs/MXene, (b) enlarged ZIFs/MXene, and (c) MCoO@Co-N-C; (d) TEM images of MCoO@Co-N-C; (e) SAED diffraction patterns of MCoO@Co-N-C; (f) HRTEM images of MCoO@Co-N-C, and (g) the relating elemental (Ti, C, N, Co, O) mapping images.Fig. 2. (a) XRD pattern, (b) Raman spectra, (c) N2 adsorption-desorption isotherm curves and the inset shows the pore size distribution, and (d) XPS survey spectra of MXene-900, ZIFs-900, and MCoO@Co-N-C.Fig. 3. XPS spectra of (a) Co, (b) N, and (c) Ti elements in MXene-900, ZIFs-900, and MCoO@Co-N-C samples; (d) percentages of diverse atomic Ti species (Ti2+, Ti3+, and Ti-O) of the MXene-900 and MCoO@Co-N-C.Fig. 4. (a) Degradation performance of BPA in different systems, [BPA] = 20 mg L−1, [PMS] = 0.1 g L−1, [catalysts] = 0.05 g L−1, T = 25 ºC, initial pH = 3.7; (b) first-order kinetics curves of the corresponding catalysts; (c) comparisons of oxidative efficiency of MCoO@Co-N-C with those reported materials.Fig. 5. Investigations of the electron transfer mechanism. (a) Effect of scavengers on BPA degradation in the MCoO@Co-N-C/PMS system, [BPA] = 20 mg L−1, [PMS] = 0.1 g L−1, [catalysts] = 0.05 g L−1, T = 25 ºC, initial pH = 3.7; (b) in situ Raman spectra of different samples; (c) variation of open circuit potential for different catalysts; (d, e) i-t curves obtained at 0 V vs. Ag/AgCl using 100 mM Na2SO4 as the electrolyte; (f) EIS Nyquist plots of the as-prepared catalysts.Fig. 6. (a) ETP for BPA oxidation induced by potential energy difference; (b) charge density difference of the adsorption of PMS on MCoO@Co-N-C, where blue and yellow represent electron depletion and electron accumulation, respectively; (c) energy profile during the dissociation of PMS.Fig. 7. Proposed electron-transfer mechanism for PMS activation by MCoO@Co-N-C.Fig. 8. Effects of organic anions (a) Cl−, (b) NO3−, (c) H2PO4−, and (d) HCO3−, [BPA] = 20 mg L−1, [PMS] = 0.1 g L−1, [catalysts] = 0.05 g L−1, T = 25 ºC, initial pH = 3.7.Fig. 9. Possible degradation pathways of BPA in MCoO@Co-N-C/PMS systems.
综上所述,提出了MCoO@Co-N-C/PMS体系中的电子转移机制,并同时研究了不同无机阴离子对高浓度下双酚A降解的影响。具有优异导电性的二维MXene材料已被证明可以促进单体催化剂中的电子转移。独特的开放式夹层状结构不仅通过Co-N物种增强了对PMS的吸附,而且有效地实现了MXene和CoO之间的快速内部电子转移。催化剂的合理设计为激活PMS以通过耐人寻味的非自由基途径降解难降解的污染物提供了新的见解。这项工作为MXene基复合材料在AOPs中的应用提供了一个可行的框架,以去除复杂水基中的污染物。
Xin Guo, Hao Zhang, Yiyuan Yao, Chengming Xiao, Xin Yan, Ke Chen, Junwen Qi, Yujun Zhou, Zhigao Zhu, Xiuyun Sun, Jiansheng Li, Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism, Applied Catalysis B: Environmental, 2023, https://doi.org/10.1016/j.apcatb.2022.122136