服务粉丝

我们一直在努力
当前位置:首页 > 财经 >

目录 | 《电化学》2022年第10期(电解水制氢专辑-下)文章速览

日期: 来源:电化学期刊收集编辑:电化学期刊

专辑介绍:《电化学》期刊2022年出版《电解水制氢专辑》,分为上、下两期,由重庆大学李莉教授、中国科学院化学研究所胡劲松研究员、重庆大学魏子栋教授共同担任客座编辑。




封面:工业级海水电解产氢,作为可再生能源驱动的“绿氢”产业,有望替代传统“灰氢”产业,为能源结构和生态环境的可持续发展开辟了一条极具潜力的道路。(文章号2214006)




本期为全英文,收录5篇电解水制氢方向的综述和研究论文。扫描或识别二维码,免费查看、下载文献的PDF全文。


作 者 聚 焦


Author Spotlight.

DOI:10.13208/j.electrochem.2214111




张涛, 刘一蒲, 叶齐通, 范红金. 工业级碱性海水电解:近期进展和展望[J]. 电化学, 2022, 28(10): 2214006.


Zhang Tao, Liu Yi-Pu, Ye Qi-Tong, Fan Hong-Jin. Alkaline Seawater Electrolysis at Industrial Level:Recent Progress and Perspective[J]. Journal of Electrochemistry, 2022, 28(10): 2214006.

DOI:10.13208/j.electrochem.2214006




Industrial hydrogen generation through water splitting, powered by renewable energy such as solar, wind and marine, paves a potential way for energy and environment sustainability. However, state-of-the-art electrolysis using high purity water as hydrogen source at an industrial level would bring about crisis of freshwater resource. Seawater splitting provides a practical path to solve potable water shortage, but still faces great challenges for large-scale industrial operation. Here we summarize recent developments in seawater splitting, covering general mechanisms, design criteria for electrodes, and industrial electrolyzer for direct seawater splitting. Multi-objective optimization methods to address the key challenges of active sites, reaction selectivity, corrosion resistance, and mass transfer ability will be discussed. The recent development in seawater electrolyzer and acquaint efficient strategies to design direct devices for long-time operation are also highlighted. Finally, we provide our own perspective to future opportunities and challenges towards direct seawater electrolysis.




魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学, 2022, 28(10): 2214012.


Wei Jia-Qi, Chen Xiao-Dong, Li Shu-Zhou. Electrochemical Syntheses of Nanomaterials and Small Molecules for Electrolytic Hydrogen Production[J]. Journal of Electrochemistry, 2022, 28(10): 2214012.

DOI:10.13208/j.electrochem.2214012




Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile fabrication method for materials ranging from molecular to nano scales via electrolysis or other electrochemical operations. In this review, we firstly introduce the basic concepts, design protocols, and typical methods of electrochemical synthesis. Then, we summarize the applications and advances of electrochemical synthesis in the field of electrocatalytic water splitting. We focus on the synthesis of nanostructured electrocatalysts towards more efficient HER, as well as electrochemical oxidation of small molecules to replace OER for more efficient and/or value-adding co-electrolysis with HER. We systematically discuss the relationship between electrochemical synthetic conditions and the product morphology, selectivity to enlighten future explorations. Finally, challenges and perspectives for electrochemical synthesis towards advanced water electrolysis, as well as other energy conversion and storage applications are featured.




谢文富, 邵明飞. 碱性电解水高效制氢[J]. 电化学, 2022, 28(10): 22014008.


Xie Wen-Fu, Shao Ming-Fei. Alkaline Water Electrolysis for Efficient Hydrogen Production[J]. Journal of Electrochemistry, 2022, 28(10): 22014008.

DOI:10.13208/j.electrochem.2214008




Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with fossil fuel-based hydrogen. However, this promising technique suffers from the high energy consumption and unsatisfactory cost due to the sluggish kinetics of both half reaction and inferior stability of electrocatalysts. To address this challenge, herein, we present a timely and comprehensive review on advances in alkaline water electrolysis that is already commercialized for large scale hydrogen production. The design principles and strategies with aiming to promote the performance of hydrogen generation are discussed from the view of electrocatalyst, electrode, reaction and system. The challenges and related prospects are presented at last, hopefully to provide essential ideas and to promote the wide application of hydrogen production.




万紫轩, 王超辉, 康雄武. 泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能[J]. 电化学, 2022, 28(10): 2214005.


Wan Zi-Xuan, Wang Chao-Hui, Kang Xiong-Wu. A Self-Supported Ru-Cu3P Catalyst toward Alkaline Hydrogen Evolution[J]. Journal of Electrochemistry, 2022, 28(10): 2214005.

DOI:10.13208/j.electrochem.2214005




Transition metal phosphide (TMP) is a kind of effective catalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes. However, the performance of TMP catalysts is strongly limited by water splitting. In this work, we developed a method to prepare a copper foam (CF) supported Ru-doped Cu3P catalyst (Ru-Cu3P/CF) by a consecutive growth of Cu(OH)2nanoarrays, soaking in RuCl3 solution and phosphorization. A large surface area was obtained by the self-supported catalysts with the appropriative Ru doping. As an excellent HER catalyst, it exhibited a low overpotential of 95.6 mV at a current density of 10 mA·cm-2, which is 149.4 mV lower than that of Cu3P/CF without Ru-doping.The Tafel slope was reduced from 136.6 to 73.6 mA·dec-1and the rate determining step was changed from Volmer step to Heyrovsky step. The improvement of HER performance might be attributed to the facilitated water splitting step by Ru-doping, which provides more active sites for water splitting. The nanoparticles morphology of Ru-Cu3P derived from the Cu(OH)2 arrays ensured large electrochemical surface areas of the supported electrodes, which could promote the mass and electron transfers, and promote gas production and bubble release. This work highlights the importance of the tuning of the water splitting step and surface engineering by the transition metal with emptier d orbitals, which may pave the road for design of high-performance HER electrocatalyst.




孙雪, 宋亚杰, 李仁龙, 王家钧. 无序Ru-O构型对电化学析氢催化性能研究[J]. 电化学, 2022, 28(10): 2214011.


Sun Xue, Song Ya-Jie, Li Ren-Long, Wang Jia-Jun. Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution[J]. Journal of Electrochemistry, 2022, 28(10): 2214011.

DOI:10.13208/j.electrochem.2214011




Phase engineering is considered as an effective method for modulating the electronic structure and catalytic activity of catalysts. The disordered conformation of amorphous materials allows flexible reforming of the surface electronic structure, showing their attractiveness as catalysts for hydrogen evolution reaction (HER). Herein, we designed and developed an amorphous ruthenium dioxide (a-RuO2) catalyst with a disordered Ru-O configuration. The conformational relationship between Ru-O ordering and HER performance is established by combining advanced electron microscopic techniques with detailed electrochemical tests. Specifically, the disordered Ru-O coordination significantly enhanced the HER catalytic activity in both acidic and alkaline media, ultimately leading to HER performance of a-RuO2 approaching that of commercial Pt/C with higher economics. In addition, a-RuO2 exhibited excellent stability after 10 h current-time (i-t) testing at 10 mA·cm-2. Further theoretical simulations showed that the lowered d-band center and optimized electron transport of a-RuO2 modulated the adsorption strength of the active site to the intermediate reactants, promoting HER kinetics. This work provides a new perspective for exploring highly active HER catalysts through phase engineering.








《电化学》期刊各方向文章专题推荐
本刊推荐 | 北京化工大学邵明飞课题组综述赏析:碱性电解水高效制氢
本刊推荐 | 长春应化所邢巍组综述赏析:酸性低铱氧析出
本刊推荐 | 吸电子亲水性取代基钴卟啉用于电催化氧还原

本刊推荐 | 哈工大王家钧团队:无序Ru-O构型对电化学析氢的催化作用

本刊推荐 | 电化学合成纳米与小分子材料助力电解水制氢






《电化学》(Journal of Electrochemistry,简称J. Electrochem.)1995年由田昭武院士、查全性院士和吴浩青院士等创办,为中国化学会电化学专业委员会会刊,是中国第一个、也是唯一的融基础理论研究与技术应用为一体的电化学专业学术期刊,由中国科学技术协会主管、中国化学会和厦门大学共同主办,2022年变更为月刊,向国内外公开发行。《电化学》旨在及时反映我国电化学领域的最新科研成果和动态,促进国内、国际的学术交流。《电化学》遵循国际通行的办刊惯例,实行主编、副主编负责制,所有刊出稿件均必须经过同行评议。


《电化学》自创刊以来,已分别被北京大学图书馆、中国科学院和中国科技信息研究所遴选为“中国核心期刊”,被Scopus、EBSCO、CA、JST、CNKI、CSCD等国内外重要数据库收录,曾获《中国知识资源总库》精品期刊、华东地区优秀期刊等奖项。


竭诚欢迎广大学术界、产业界科技工作者踊跃投稿和订阅,为本刊献策建议。



相关阅读

  • 科普 | 当“电化学”遇上“药物释放系统”

  • 背景介绍图 1 电化学与药物释放系统的交叉融合(图片来源于网络)。传统的口服或注射给药方式由于需要穿透人体内的多种生物屏障,具有给药方式复杂、给药效率低、给药量大,易造成
  • 3名院士被处理,院士改革确实动真格了!

  • 本周三,北京理工大学、中科院分别发布通报,对方岱宁院士相关视频事件进行处理。其中中科院的处理结果如下:停止方岱宁以下院士权利:(1)参加院士会议等学部组织的学术活动;(2)推荐
  • 颜宁履新!

  • 来源:人民网深圳频道(王星)、澎湃新闻12月10日,深圳医学科学院(筹)揭牌。深圳市委书记孟凡利,市委副书记、市长覃伟中出席活动并向颜宁颁发聘书。深圳医学科学院(筹)院长颜宁在致辞
  • 祝贺!!2022年度山东省科学技术奖奖励名单

  • 12月15日, 山东省人民政府发布《山东省人民政府关于2022年度山东省科学技术奖励的决定》,根据《山东省科学技术奖励办法》规定,经省科学技术奖励评审委员会评审、省科学技术奖
  • 生物质衍生硅氧化物助力高性能锂离子电池

  • 点击左上角“锂电联盟会长”,即可关注!文 章 信 息第一作者:郭笑天通讯作者:庞欢*单位:扬州大学化学化工学院研 究 背 景硅氧化物(SiOx)被认为是一种很有前景的锂离子电池负极材料,

热门文章

  • “复活”半年后 京东拍拍二手杀入公益事业

  • 京东拍拍二手“复活”半年后,杀入公益事业,试图让企业捐的赠品、家庭闲置品变成实实在在的“爱心”。 把“闲置品”变爱心 6月12日,“益心一益·守护梦想每一步”2018年四

最新文章

  • 科普 | 当“电化学”遇上“药物释放系统”

  • 背景介绍图 1 电化学与药物释放系统的交叉融合(图片来源于网络)。传统的口服或注射给药方式由于需要穿透人体内的多种生物屏障,具有给药方式复杂、给药效率低、给药量大,易造成
  • 干货 | 综述图片获取版权流程

  • TEAM WORK SUMMARY综述引用图片版权获取流程总结 前言大家在撰写综述过程中会使用到已发表文章中的表征或实验结果图片,本条推文总结了获取不同文章中图片版权的流程,希望对大
  • 电池将车企“逼到了墙角”?

  • 倒计时 15 天【宏工科技总冠名】 第七届动力电池应用国际峰会(CBIS2022)绿色低碳:构建锂电发展新生态主办单位:中国化学与物理电源行业协会     电池中国网联合主办:江西明