Er2O3和La2O3含量对掺Er溶胶-凝胶石英玻璃光谱性能的影响研究

孙淼, 陈昕蕊, 焦润妍, 等. Er2O3和La2O3含量对掺Er溶胶-凝胶石英玻璃光谱性能的影响研究[J]. 齐鲁工业大学学报, 2022, 36(3): 39-45. DOI: 10.16442/j.cnki.qlgydxxb.2022.03.006



Er2O3和La2O3含量对掺Er溶胶-凝胶石英玻璃光谱性能的影响研究

孙淼, 陈昕蕊, 焦润妍, 王雪

摘要:采用溶胶-凝胶法结合高温烧结制备了掺杂不同Er3+离子摩尔分数的石英玻璃和0.5% Er2O3和不同La3+离子摩尔分数共掺杂的石英玻璃。通过1.5 μm的荧光光谱发现, Er/Al共掺杂石英玻璃的最佳Er2O3掺杂摩尔分数为0.5%。采用傅里叶变换红外光谱(FTIR)研究了Al3+、La3+和Er3+共掺杂石英玻璃的结构, 并通过吸收光谱和荧光光谱分析了其光谱特性。结果表明, La2O3可以解聚玻璃网络, 从而起到网络改性剂的作用。利用Er3+掺杂玻璃的吸收光谱计算出了Judd-Ofelt参数, 进而预测了La2O3含量的影响。随着La3+离子掺杂量的增加, 样品的荧光强度、荧光寿命和σems×τf增加。这些结果表明, La/Al/Er共掺杂石英玻璃是开发光学器件潜在的有用材料。

关键词Er3+/Al3+/La3+共掺杂石英玻璃 Er3+离子的光谱 1.5μm激光 红外光谱

图 1 不同Er2O3摩尔分数掺杂石英玻璃的荧光光谱, 插图为不同Er2O3浓度的荧光半高宽

图 2 ELAS1玻璃的吸收光谱, 吸收带是从基态4I15/2到各种激发态的跃迁, 插图为FTIR光谱

图 2 不同La2O3摩尔分数掺杂ELAS系列玻璃的荧光光谱

图 4 Er3+掺杂ELAS系列玻璃4I15/2能级的荧光衰减曲线

图 5 Er3+掺杂ELAS系列玻璃的FTIR

参考文献

[1]

杨雨. 基于钠硼硅玻璃分相法的稀土离子掺杂石英玻璃和光纤研究[D]. 武汉: 华中科技大学, 2019.

[2]

陈章汝. 基于纳米多孔石英玻璃的稀土离子荧光调控[D]. 武汉: 华中科技大学, 2019.

[3]

ZHANGN, LINZ, MANS. Er3+掺杂Li2O-SrO-ZnO-Bi2O3玻璃中Er3+离子在1.53 μm处的荧光发射特性[J]. 无机化学学报, 2021, 37(6): 984-988.

[4]

朱文明. 掺铒碲铋酸盐微晶玻璃的制备与发光性能研究[D]. 广州: 华南理工大学, 2019.

[5]

杨润兰. 铒掺杂氟硅酸盐及氟磷酸盐微晶玻璃的制备及其光谱性能研究[D]. 南京: 南京邮电大学, 2017.

[6]

ALLEN TW, HAWKEYE MM, HAUGEN CL, et al. Photoluminescence measurements of Er-doped chalcogenide glasses[J]. Journal of Vacuum Science & Technology, 2004, 22: 921-924.

[7]

WANG X, HU L, XU W, et al. Spectroscopic properties of Ho3+ and Al3+ co-doped silica glass for 2 μm laser materials[J]. Journal of Luminescence, 2015, 166: 276-281. DOI:10.1016/j.jlumin.2015.05.055

[8]

KOHLI JT, CONDRATE R A, SHELBY S, et al. Raman and infrared spectra of rare earth aluminosilicate glasses[J]. Physics and chemistry of glasses, 1993, 34(3): 81-87.

[9]

MARCHI J, MORAIS DS, SCHNEIDER J, et al. Characterization of rare earth aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2005, 351: 863-868. DOI:10.1016/j.jnoncrysol.2005.01.078

[10]

SCHALLER T, STEBBINS JF. The Structural Role of Lanthanum and Yttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMR Study[J]. The Journal of Physical Chemistry B, 1998, 102: 10690-10697. DOI:10.1021/jp982387m

[11]

SEN S, YOUNGMAN RE. High-resolution multinuclear NMR structural study of binary aluminosilicate and other related glasses[J]. The Journal of Physical Chemistry B, 2004, 108: 7557-7564. DOI:10.1021/jp031348u

[12]

ERBE E, DAY E. Properties of Sm2O3-Al2O3-SiO2 Glasses for In Vivo Applications[J]. Journal of the American Ceramic Society, 1990, 73: 2708-2713. DOI:10.1111/j.1151-2916.1990.tb06750.x

[13]

JANDER P, BROCKLESBY WS. Spectroscopy of yttria-alumina-silica glass doped with thulium and erbium[J]. IEEE journal of quantum electronics, 2004, 40: 509-512. DOI:10.1109/JQE.2004.826455

[14]

KUSHIDA T. Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials[J]. Journal of the Physical Society, 1973, 34: 1318-1326. DOI:10.1143/JPSJ.34.1318

[15]

LIU S, ZHENG S, YANG K, et al. Radiation-induced change of OH content in Yb-doped silica glass[J]. Chinese Optics Letters, 2015, 13: 060602. DOI:10.3788/COL201513.060602

[16]

OFEIT GS. Intensities of crystal spectra of rare-earthions[J]. The Journal of Chemical Physics, 1962, 37: 511-520. DOI:10.1063/1.1701366

[17]

LIN H, LIU K, PUN EY, et al. Infrared and visible fluorescence in Er3+-doped gallium tellurite glasses[J]. Chemical Physics Letters, 2004, 398: 146-150. DOI:10.1016/j.cplett.2004.09.043

[18]

PISARSKI WA. Spectroscopic analysis of praseodymium and erbium ions in heavy metal fluoride and oxide glasses[J]. Journal of Molecular Structure, 2005, 744-747.

[19]

QIAO X, FAN X, WANG M. Up-conversion luminescence and near infrared luminescence of Er3+ intransparent oxyfluoride glass-ceramics[J]. Optical Materials, 2004, 27: 597-603. DOI:10.1016/j.optmat.2004.07.009

[20]

SARDAR DK, GRUBER JB, ZANDI B, et al. Judd-Ofelt analysis of the Er3+ absorption intensities in phosphate glass: Er3+, Yb3+[J]. Journal of Applied Physics, 2003, 93: 2041-2046. DOI:10.1063/1.1536738

[21]

XUE T, ZHANG L, WEN L, et al. Er3+-doped fluorogallate glass for mid-infrared applications[J]. Chinese Optics Letters, 2015, 13: 081602. DOI:10.3788/COL201513.081602

[22]

WANG X, ZHANG R, REN J, et al. Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization[J]. Journal of Alloys and Compounds, 2017, 695: 2339-2346. DOI:10.1016/j.jallcom.2016.11.104

[23]

QIAO S, ZHANG Y, SHI S, et al. Spectral properties and laser performance of Nd: Lu3Al5O12 ceramic[J]. Chinese Optics Letters, 2015, 13: 051602. DOI:10.3788/COL201513.051602

[24]

JIANG S, LUO T, WANG BC, et al. Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length[J]. Journal of Non-Crystalline Solids, 2000, 263-264: 364-368. DOI:10.1016/S0022-3093(99)00646-8

[25]

SHEN S, NAFTALY M, JHA A. Tm3+and Er3+doped tellurite glass fibers for a broadband amplifier at 1430 to1600 nm[R]. SPIE Conf. on Infrared Optical Fibers and their Applications, Boston, MA, 1999.

[26]

LIAO M, HU L, DUAN Z, et al. Spectroscopic properties of fluorophosphate glass with high Er3+ concentration[J]. Applied Physics B, 2007, 86: 83-89.

[27]

LEE WK, DEVENTER JS. Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates[J]. Langmuir, 2003, 19: 8726-8734. DOI:10.1021/la026127e

[28]

HANDKE M, MOZGAWA W. Vibrational spectroscopy of the amorphous silicates[J]. Vibrational Spectroscopy, 1993, 5: 75-84. DOI:10.1016/0924-2031(93)87057-Z

溶胶   含量   Er
发表评论
留言与评论(共有 0 条评论) “”
   
验证码:

相关文章

推荐文章