遗传人工神经网络Python实现

介绍

人工神经网络的灵感来自我们的大脑。遗传算法受到进化的启发。本文提出了一种新型的辅助训练的神经网络:遗传神经网络。这些神经网络具有适应度等特性,并使用遗传算法训练随机生成的权重。遗传优化发生在任何形式的反向传播之前,以给梯度下降提供一个更好的起点。

序列神经网络

序列神经网络接受一个输入矩阵,在模型外部与一个真实输出值的向量配对。然后通过遍历每一层,通过权重和激活函数来变换矩阵。

这是一个序列神经网络,具有一个输入矩阵,两个隐藏层,一个输出层,三个权重矩阵和一种激活函数。

训练算法

最初的预测很可能是不准确的,所以为了训练一个序列神经网络做出更好的预测,我们把它看作一个复合函数。

创建一个损失函数,输入矩阵和真实输出向量(X和y)保持不变。

现在所有的东西都是关于函数的,并且有一个明确的目标(最小化损失),我们得到一个多变量微积分的优化问题。

随着模型显示出越来越多的复杂性,梯度下降的计算成本可能变得非常昂贵。遗传神经网络提供了一个可供选择的初始训练过程,以提供一个更好的起点,在反向传播过程中允许更少的epochs。

遗传神经网络

在遗传神经网络中,网络被视为具有fields和适应度的计算对象。这些fields被认为是在反向传播之前通过遗传算法优化的基因。这使得梯度下降具有更好的起始位置,并且允许更少的训练时间,并具有更高的模型测试准确度。考虑以下遗传神经网络,其中权重被视为计算对象中的fields。

这些fields是相对于遗传神经网络的每个实例的基因。就像序列神经网络一样,它可以表示为复合函数。

然而,在使用微积分之前,我们将使用遗传算法采取进化方法来优化权重。

遗传算法

在自然界中,染色体交叉看起来是这样的…

如果我们把染色体简化成块…

这与遗传算法用于改变权重矩阵的逻辑相同。这个想法将是创建一个初始种群的n个遗传神经网络,经过正向传播计算出一个适应度得分,最后选择最适合的个体来创建孩子。这个过程将重复,直到找到最优的初始权值进行反向传播。

应用遗传神经网络

首先,我们必须建立遗传神经网络。我们使用的是具有四个输入节点,两个隐藏层和一个输出层的训练模型(以匹配上图),这可以扩展到任何类型的神经网络。

import pandas as pd
import numpy as np
import random
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from keras.models import Sequential
from keras.layers import Dense
# New Type of Neural Network
class GeneticNeuralNetwork(Sequential):
# Constructor
def __init__(self, child_weights=None):
# Initialize Sequential Model Super Class
super().__init__()
# If no weights provided randomly generate them
if child_weights is None:
# Layers are created and randomly generated
layer1 = Dense(4, input_shape=(4,), activation='sigmoid')
layer2 = Dense(2, activation='sigmoid')
layer3 = Dense(1, activation='sigmoid')
# Layers are added to the model
self.add(layer1)
self.add(layer2)
self.add(layer3)
# If weights are provided set them within the layers
else:
# Set weights within the layers
self.add(
Dense(
4,
input_shape=(4,),
activation='sigmoid',
weights=[child_weights[0], np.zeros(4)])
)
self.add(
Dense(
2,
activation='sigmoid',
weights=[child_weights[1], np.zeros(2)])
)
self.add(
Dense(
1,
activation='sigmoid',
weights=[child_weights[2], np.zeros(1)])
)
# Function for forward propagating a row vector of a matrix
def forward_propagation(self, X_train, y_train):
# Forward propagation
y_hat = self.predict(X_train.values)
# Compute fitness score
self.fitness = accuracy_score(y_train, y_hat.round())
# Standard Backpropagation
def compile_train(self, epochs):
self.compile(
optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy']
)
self.fit(X_train.values, y_train.values, epochs=epochs)

现在我们已经建立了遗传神经网络,我们可以开发出一种交叉算法。我们将使用类似于上面给出的生物图示的单点交叉。每一个矩阵列都有相同的机会被选择为一个交叉点,让每一个父母组合他们的基因并将它们传递给孩子。

# Crossover traits between two Genetic Neural Networks
def dynamic_crossover(nn1, nn2):
# Lists for respective weights
nn1_weights = []
nn2_weights = []
child_weights = []
# Get all weights from all layers in the first network
for layer in nn1.layers:
nn1_weights.append(layer.get_weights()[0])
# Get all weights from all layers in the second network
for layer in nn2.layers:
nn2_weights.append(layer.get_weights()[0])
# Iterate through all weights from all layers for crossover
for i in range(0, len(nn1_weights)):
# Get single point to split the matrix in parents based on # of cols
split = random.randint(0, np.shape(nn1_weights[i])[1]-1)
# Iterate through after a single point and set the remaing cols to nn_2
for j in range(split, np.shape(nn1_weights[i])[1]-1):
nn1_weights[i][:, j] = nn2_weights[i][:, j]
# After crossover add weights to child
child_weights.append(nn1_weights[i])
# Add a chance for mutation
mutation(child_weights)
# Create and return child object
child = GeneticNeuralNetwork(child_weights)
return child

为了确保种群探索解空间,应该会发生突变。在这种情况下,因为解空间非常大,突变的概率显著高于大多数其他遗传算法。没有特定的方法来改变矩阵,我们在矩阵上随机执行标量乘法,幅度为2-5。

# Chance to mutate weights
def mutation(child_weights):
# Add a chance for random mutation
selection = random.randint(0, len(child_weights)-1)
mut = random.uniform(0, 1)
if mut >= .5:
child_weights[selection] *= random.randint(2, 5)
else:
# No mutation
pass

最后,模拟遗传神经网络的演化。我们需要网络数据来学习,因此我们将使用众所周知的 banknote机器学习数据集。

# Read Data
data = pd.read_csv('banknote.csv')
# Create Matrix of Independent Variables
X = data.drop(['Y'], axis=1)
# Create Vector of Dependent Variable
y = data['Y']
# Create a Train Test Split for Genetic Optimization
X_train, X_test, y_train, y_test = train_test_split(X, y)
# Create a List of all active GeneticNeuralNetworks
networks = []
pool = []
# Track Generations
generation = 0
# Initial Population
n = 20
# Generate n randomly weighted neural networks
for i in range(0, n):
networks.append(GeneticNeuralNetwork())
# Cache Max Fitness
max_fitness = 0
# Max Fitness Weights
optimal_weights = []
# Evolution Loop
while max_fitness < .9:
# Log the current generation
generation += 1
print('Generation: ', generation)
# Forward propagate the neural networks to compute a fitness score
for nn in networks:
# Propagate to calculate fitness score
nn.forward_propagation(X_train, y_train)
# Add to pool after calculating fitness
pool.append(nn)
# Clear for propagation of next children
networks.clear()
# Sort based on fitness
pool = sorted(pool, key=lambda x: x.fitness)
pool.reverse()
# Find Max Fitness and Log Associated Weights
for i in range(0, len(pool)):
# If there is a new max fitness among the population
if pool[i].fitness > max_fitness:
max_fitness = pool[i].fitness
print('Max Fitness: ', max_fitness)
# Reset optimal_weights
optimal_weights = []
# Iterate through all layers, get weights, and append to optimal
for layer in pool[i].layers:
optimal_weights.append(layer.get_weights()[0])
print(optimal_weights)
# Crossover, top 5 randomly select 2 partners for child
for i in range(0, 5):
for j in range(0, 2):
# Create a child and add to networks
temp = dynamic_crossover(pool[i], random.choice(pool))
# Add to networks to calculate fitness score next iteration
networks.append(temp)
# Create a Genetic Neural Network with optimal initial weights
gnn = GeneticNeuralNetwork(optimal_weights)
gnn.compile_train(10)
# Test the Genetic Neural Network Out of Sample
y_hat = gnn.predict(X_test.values)
print('Test Accuracy: %.2f' % accuracy_score(y_test, y_hat.round()))

结果

第一种模式:10代遗传算法和10个epochs的训练

第二种模式:10个epochs的训练

  • 遗传神经网络的测试准确度为 .96
  • 标准神经网络的测试准确度为 .57

遗传神经网络在相同数量的训练时期内将模型准确度提高了 0.39。

发表评论
留言与评论(共有 0 条评论)
   
验证码:

相关文章

推荐文章

'); })();